2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Comparing performance parameters of mobile app
development strategies

Michiel Willocx, Jan Vossaert, Vincent Naessens
MSEC, iMinds-DistriNet
KU Leuven, Technology Campus Ghent
Gebroeders Desmetstraat 1, 9000 Ghent, Belgium

firstname.lasthame@cs.kuleuven.be

ABSTRACT

Mobile cross-platform tools (CPTs) provide an interesting
alternative to native development. Cross-platform tools aim
at sharing a significant portion of the application codebase
between the implementations for the different platforms.
This can drastically decrease the development costs of mo-
bile applications. There is, however, some reluctance of mo-
bile application developers to adopt these tools. One of the
reasons is that the landscape of CPTs is so diverse that it is
hard to select the most suitable CPT to implement a specific
application. The contribution of this paper is twofold. First,
it presents a performance analysis of a fully functional mo-
bile application implemented with ten cross-platform tools
and native for Android, iOS and Windows Phone. The per-
formance tests are executed on a high- and low-end Android
and iOS device, and a Windows Phone device. Second,
based on the performance analysis, general conclusions of
which application developers should be aware when select-
ing a specific (type of) cross-platform tool are drawn.

Keywords

mobile application development, cross-platform tools, per-
formance analysis, Android, i0S, Windows Phone

1. INTRODUCTION

The smartphone opened up many opportunities to pro-
vide new types of services to users. Also, service providers
are trying to attract new users and support existing users
more efficiently by making their services available via the
smartphone. To increase revenue, service providers want to
reach as many users as possible with their mobile services.
However, making services available on all mobile platforms
is very costly due to the fragmentation of the smartphone
and tablet market. Although Windows is extending their
user base, iOS and Android still remain the biggest players
on the market [23].

Developing native applications for each platform drasti-
cally increases the development costs. While native appli-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MobileSoft’16, May 16-17, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4178-3/16/05. .. $15.00
DOL: http://dx.doi.org/10.1145/2897073.2897092

38

cations can fully exploit the features of a particular mobile
platform, limited or no code can be shared between the dif-
ferent implementations. Each platform requires dedicated
tools and different programming languages (e.g. Objective-
C, C# and Java). Also, maintenance (e.g. updates or bug
fixes) can be very costly. Hence, application developers are
confronted with huge challenges. A promising alternative
are mobile cross-platform tools (CPTs). A significant part
of the code base is shared between the implementations for
the multiple platforms. Moreover, many cross-platform tools
use Web-based programming languages to implement the
application logic. This facilitates programmers with a Web
background to start developing mobile applications.

More than one hundred different CPTs [28] are currently
available. Each cross-platform tool relies on specific tech-
nologies and programming languages. Selecting the most
suitable tool is no sinecure. Even though a considerable
amount of scepticism about CPTs exists and although sur-
veys [28] have shown that the overall satisfaction concern-
ing the development process has been low in the past, many
tools have become more mature over the last few years. It
is, therefore, interesting to see if these tools are able to over-
come the scepticism and provide a viable alternative to na-
tive development.

Past studies mainly focused on a qualitative analysis and
evaluation of CPTs. Amongst others, they give an insight
in licensing costs, available support, programming languages
and development environments. Although these parameters
are certainly important when selecting a suitable CPT, they
only address specific concerns during the selection process.
The performance of the resulting app on the different plat-
forms can also be a key factor. This is exactly the scope of
our study.

Contribution. This paper presents the results of a quan-
titative performance analysis of cross-platform applications.
A set of performance parameters related to mobile applica-
tion behavior is defined and evaluated using a fully func-
tional application that is implemented using the native de-
velopment strategies for iOS, Android and Windows Phone
and using ten commonly used/promising cross-platform tools.
The performance parameters of the implementations are eval-
uated using a high- and low-end Android and iOS device an a
Windows Phone device. Based on the results of the analysis,
general conclusions of which application developers should
be aware when selecting a specific (type of) cross-platform
tool are drawn. The analysis is based on an existing third-
party, mobile application, namely PropertyCross'. This
application has been developed using both the native iOS,

Android and Windows Phone development strategy and the
cross-platform development strategy with several CPTs. The
scope of this work is to analyse performance parameters re-
lated to general application behavior. This behavior does
not depend on the specific type or functionality of the ap-
plication. The analysis is done using a fully functional ap-
plication implemented by experts in each tool. Hence, the
results of the analyses should be representative for applica-
tions implemented by the selected tools. More information
on the PropertyCross application is given in Section 4.

Initial performance analysis results were published as work
in progress in [29]. Two cross-platform implementations
were evaluated. This paper extends our previous work in
multiple ways. First of all, more tools are tested. This allows
us to cover many different cross platform development tech-
nologies and draw more representative and extensive conclu-
sions. Secondly, Windows Phone is added to the comparison.
Hence, the three most-used mobile platforms (95+% of the
smartphone market) are covered by this research. Finally,
in-depth guidelines are drawn that may steer the selection
of a development strategy for mobile apps.

The rest of this paper is structured as follows. Section 2
points to related work. Section 3 discusses the different types
of cross-platform tools. In section 4, the application used
for the performance evaluation is presented along with the
ten selected CPTs. Section 5 gives an overview of the five
devices used for the performance tests. The evaluation cri-
teria and the measurement tools are discussed in section 6.
In the next section, the results of the performance tests are
presented and discussed. In section 8, general conclusions of
which application developers should be aware when selecting
a specific (type of) cross-platform tool are drawn. The final
section presents the conclusions and point to future work.

2. RELATED WORK

Many existing studies focus on the evaluation and com-
parison of cross-platform tools based on qualitative prop-
erties. Trajkovik et al. [16] give a global overview of the
state-of-the-art regarding mobile application development
and address major challenges and opportunities for devel-
opers. El-Kassas et al. [21] describe a wide array of tech-
nologies which can be used to achieve cross-platform appli-
cations for mobile devices. Other contributions give a more
detailed overview of a small subset of cross-platform tools.
For instance, Heitkotter et al. [22] present an in-depth com-
parison of some cross-platform tools based on several qual-
itative parameters such as licensing costs, supported plat-
forms, look-and-feel, development environments, maintain-
ability and scalability. They also focus on user-perceived
application performance. Malavolta et al. [24] focus the end
user’s perception of hybrid applications by analysing hybrid
app reviews in the Google Play Store.

Zibula et al. [31] give a detailed overview of the technolo-
gies that are used by different CPTs. Other qualitative anal-
yses are presented in [25,27] and [18]. Xanthopoulos [30]
presents a demo application that is realized with multiple
CPTs. Their analysis mainly focuses on the graphical user
interface and the user experience. Rahul et al. [26] present
a CPT selection strategy based on qualitative properties.

The amount of research providing a quantitative analy-
sis of performance properties is rather limited. Dalmasso et
al. [20] built a demo application for Android with a selection
of four different cross-platform tools. The demo application

39

was used to measure and evaluate the CPU usage, mem-
ory usage and battery consumption. They, however, did not
use a native application as a baseline to evaluate the be-
havior of the CPTs, nor did they evaluate the behavior of
the tools on the iOS platform. Ciman et al. [17] focus on
the impact of using different cross-platform development ap-
proaches on energy consumption. Corral et al. [19] analyse
response times when accessing different device features and
sensors in a PhoneGap application and compare the results
to a native approach.

3. CROSS-PLATFORM DEVELOPMENT
STRATEGIES

Cross-platform tools are commonly put in five different
categories [28]: JavaScript frameworks, Web-to-native wrap-
pers, runtimes, source code translators and app factories.
App factories allow people with no programming experience
to make simple applications by using drag-and-drop mecha-
nisms. The available features and customizability are rather
limited when using an app factory and they are therefor not
further discussed in this paper.

3.1 JavaScript frameworks and web-to-native
wrappers

JavaScript frameworks use Web technologies for the de-
velopment of mobile applications. The user interface of the
application is developed with HTML and CSS, and the func-
tionality is implemented using JavaScript. Compared to
other JavaScript frameworks, the mobile JavaScript frame-
works provide support for implementing user interfaces and
navigation patterns specific to mobile applications. These
mobile interfaces are designed for smaller screens compared
to regular websites and, for instance, provide support for the
touch UI of mobile devices. Some frameworks also provide
native skins that tailor the Ul of the application to the look
and feel of the platform on which it is running. These skins,
however, do not yet provide a fully native experience. Most
JavaScript frameworks also support traditional design pat-
terns such as MVC an MVVM to facilitate the development
of well-structured and maintainable code. A major advan-
tage of these tools is that they enable Web developers to
participate in mobile application development.

Two distribution strategies can be applied. The most flex-
ible solution is to host the Web app on a Web server. The
user can access the Web app in a mobile browser by surfing
to the URL of the Web app, regardless of the platform of the
user. There are, however, also several disadvantages associ-
ated with this strategy. The availability and responsiveness
of the application partly depends on the Internet access of
the platform. Moreover, the functionality of the application
is constrained by the JavaScript API of the browser (e.g.
access to sensors such as accelerometer and GPS) and ac-
cessing the application is more cumbersome than starting
an application installed on the device. A second strategy is
to pack the Web app into a standalone application by using
a Web-to-native wrapper. The packaging results in an ap-
plication installer that can be submitted to the app stores
of the different platforms. The Web app is no longer run in
the browser, but in a chromeless webview which is packed
together with the application. The Web-to-native wrapper
also provides a JavaScript bridge that enables access to a
broader range of platform APIs compared to the browser.

In this paper, all tests are run on packaged Web applica-
tions that are installed on the different devices.

3.2 Runtimes and source code translators

Runtimes are compatibility layers which shield applica-
tions from underlying platform differences. In most cases, a
compilation step translates the source code to a binary or
intermediary language that runs on the runtime. In a minor-
ity of tools, the source code will run straight on the runtime
(e.g. Titanium). Some tools (e.g. NeoMAD) do not rely
on a runtime and translate the source code to native source
code for the different platforms. For each platform, the re-
sulting source code is compiled using the development tools
provided by the platform developer. In most cases, runtimes
and source code translators make use of real native UI com-
ponents, offering a real native experience.

4. TEST APPLICATION AND CPT SELEC-
TION

The performance analysis is based on the PropertyCross
application. PropertyCross is a community driven initia-
tive. On the website, a concept application is described and
implemented in over 20 cross-platform tools. The Property-
Cross application enables users to search for properties that
are for sale, based on a city name or on GPS location. Fur-
thermore, the user is able to favorite properties, which are
kept in local storage together with the search history. The
PropertyCross application is a fully functional application
with multiple screens, Web access, GPS location, and local
storage.

The advantage of using an existing application instead of
making a new one is twofold. First of all, learning tools and
implementing applications is very time consuming. More-
over, each implementation available on the PropertyCross
website is developed by programmers with experience with
the used tool. This results in better code quality and, thus,
ensures more representative measurements and conclusions.

For the selection of cross-platform tools for the perfor-
mance analysis, several criteria were taken into account.
First of all, there is the availability of a PropertyCross imple-
mentation using the tool. This does not restrict our research,
as most well-known and often-used cross-platform tools are
supported [28]. Second, there was sought to select a wide
range of different technologies, programming languages and
development strategies. In total, ten cross-platform tools
are selected, containing commonly used cross-platform tools
(e.g. Xamarin, Titanium (Appcellerator) and Sencha Touch
2) and several promising tools (e.g. Ionic and NeoMAD).
The selection consists of four runtimes/source code transla-
tors and six JavaScript frameworks.

4.1 JavaScript frameworks and web-to-native
wrappers

PhoneGap [10] is the most well-known and most used
Web-to-native wrapper. Many JavaScript frameworks offer
automated integration with PhoneGap to generate an in-
stallable application for the different platforms. This section
further discusses the selected JavaScript frameworks that are
all evaluated using PhoneGap as Web-to-native wrapper.

e Tonic [5] is an AngularJS-based [2] JavaScript frame-
work. The main focus of Ionic is the look and feel
and UI of the application. Furthermore, the use of

40

AngularJS simplifies development by providing MVC
support. lonic also offers native skins, which enhance
the user experience of the application.

Sencha Touch 2 [12] is one of the most popular
JavaScript frameworks. The tool specializes in offering
out-of-the-box native-looking Ul components. It sup-
ports several mobile Ul features (e.g. switching from
landscape to portrait, typical mobile navigation pat-
terns ...), which also enhances the user experience.
Further, Sencha requires the use of the MVC design
pattern.

e jQuery Mobile [6] is a jQuery-based JavaScript frame-

4.2

work which allows developers to create responsive web-
sites.

Intel App Framework (IAF) [4] is also a mobile
optimized version of jQuery. On top of the lightweight
jQuery library, it also offers a MVC framework, addi-
tional Ul components and a native look and feel.

MGWT [7] is the mobile version of Google Web Toolkit.
MGWT uses a unique approach to develop JavaScript
apps. The application is written in Java, and is au-
tomatically translated to JavaScript at compile time
(cf. GWT). The main difference between MGWT and
GWT is the support for specific mobile application fea-
tures (e.g. mobile widgets and touch navigation). One
of the big advantages of this approach is that existing
GWT applications can be very easily transformed to
mobile applications using MGWT.

Famou.us [3] is an open-source JavaScript framework
which replaces the standard browser’s DOM-based ren-
dering mechanism by its own rendering engine. The
main focus of this framework is to build high-perfor-
mance web-apps by making use of GPU acceleration
to allow 60 FPS.

Runtimes and source code translators

Adobe AIR [1] stands for Adobe Integrated Runtime.
Applications are programmed using HTML, JavaScript,
Adobe Flash, ActionScript and optionally also Apache
Flex. Adobe Air does not support Windows Phone.

NeoMAD [9] uses source code translation and does
not rely on a dedicated runtime environment. The ap-
plication is implemented using Java. The Java code is
then translated into native source code for each plat-
form. The resulting source code is than compiled using
the native development tools of each platform.

Titanium (Appcelerator) [13] applications are com-
pletely written in JavaScript and make use of a run-
time element. Although the strategy looks similar to
the JavaScript frameworks combined with a Web-to-
native wrapper, there is a clear difference between both
technologies. Web-to-native wrappers use a webview
element to display the Ul In Titanium, the JavaScript
code is completely mapped to native components by
the runtime. This means that the user interface actu-
ally consists of native Ul components, resulting in a
real native experience. The mapping, however, does
not cover the complete native API. Currently Tita-
nium does not yet support Windows Phone.

e Xamarin [15] uses C# as programming language and
makes use of the open source Mono framework [8]. Xa-
marin uses different mechanisms on each of the sup-
ported platforms. In Android, the source code is trans-
lated to an intermediary language and bundled to-
gether with the Mono runtime. The Mono runtime
uses JIT-compilation when running the application. In
i0S, Xamarin uses AOT (ahead-of-time) compilation.
The app is, hence, packaged as a fully compiled native
ARM executable, together with the required .NET li-
braries. In Windows Phone, the source code is trans-
lated to an intermediary language that runs on the
.NET runtime installed on the Windows Phone plat-
form.

4.3 Native

The performance tests are also run on a native implemen-
tation for the different platforms. This provides a reference
to which the CPT implementations can be compared. Na-
tive Android applications are developed in Java, Windows
Phone applications in C# and iOS offers a choice between
Objective-C and Swift. The native iOS implementation in
this paper is implemented using Objective-C.

5. SELECTION OF DEVICES

In Table 1, an overview of the devices used for the per-
formance analysis is given. For Android and iOS both a
high-end and a low-end device was selected. Furthermore,
no high-end Windows Phone 10 device was included because
at the moment of writing this paper the Windows Phone
Developer Power Tools had no Windows Phone 10 support.
All devices were reset to the standard factory settings and
updated to the most recent operating systems available for
the device form the manufacturer. None of the devices were
rooted nor jailbroken.

Low-End High-End

ios

Device iPhone 4 iPhone 6

Operating System i0S 7 iOS 9

RAM Memory 512 MB 1 GB

CPU 1 GHz Dual-core 1.4 GHz
Android

Device Sony Xperia E3 Motorola Nexus 6

Android 4.4.2
1GB

Android 6
3 GB

Operating System
RAM Memory

CcPU Quad-core 1,2 GHz Quad-core 2.7 GHz
Windows Phone
Device Nokia Lumia 925

Windows 8.1
1GB
Dual-core 1,5 GHz

Operating System
RAM Memory
CPU

Table 1: Devices used for the performance analysis.

6. EVALUATION CRITERIA AND MEASUR-

ING TOOLS

This section discusses the parameters measured to asses
the performance of the different PropertyCross implementa-
tions. The different parameters are defined and the measur-
ing methods are presented.

6.1 Evaluation criteria

This section lists and defines the measured parameters, to-
gether with the rationale behind the selection. More specif-
ically, we argue on the relevance of each parameter with
respect to the overall performance of an application.

41

6.1.1 Response times

Generally speaking, response times are an important fac-
tor regarding the user experience. This study measures the
response times for three different actions: The launch time
of the application, the time to load a new page of the ap-
plication and the time to return to the previous page. The
start time is the time it takes to completely start the appli-
cation (i.e. from tapping the application icon to displaying
the main screen of the application). Once the application
is launched, it is important for the user to be able to navi-
gate fluently between the different pages of the application.
Slow response times will result in a negative user experi-
ence. For measuring the response times of page navigation,
the favorite page of the application was selected. This was
the only page, apart from the homepage, not requiring In-
ternet access. Opening this page, hence, does not introduce
additional communication overhead.

6.1.2 CPU usage

The CPU usage is the percentage of the total CPU ca-
pacity of the device used by the application in the measured
time interval. CPU intensive applications may negatively
impact other processes running on the device, decreasing
user experience. This research considers the overall CPU
usage of an application, as well as the CPU usage during two
specific actions in the PropertyCross application: launching
the application and using the GPS to search and list prop-
erties.

6.1.3 Memory usage

The memory usage parameter reflects the amount of RAM
memory allocated by the application. Measuring the mem-
ory footprint of the application is especially important for
low-end devices as the performance of the platform can be
significantly degraded if a high percentage of the available
RAM is allocated. In the evaluation three distinct measure-
ments of this parameter are considered. The first measure-
ment is the amount of RAM memory used when the app is
fully launched. After launching the application, each page of
the application was visited in a specified order. The second
value is the maximal memory usage measured while going
through the application. The final value is the memory us-
age measured after each page of the application was visited.

6.1.4 Disk Space

Regarding disk space, two different parameters are mea-
sured. The first parameter is the disk space taken by the
installed application on the device. This is especially im-
portant for low- end devices that, typically, have limited
persistent memory available. Second, the APK/IPA/XAP
size is measured. These are the downloadable installers for
the application, respectively for Android, iOS and Windows
Phone. The compactness of this installer is important since
applications can be installed over a mobile Internet connec-
tion.

6.1.5 Battery usage

Battery consumption is important on all mobile devices.
Users do not want applications to excessively drain their
batteries. Although cross-platform tools cause additional
battery usage as a result of the processing overhead, the
impact is negligible compared to the overhead introduced
by the design/nature of the application. Applications that

Android ioOS ‘Windows Phone
Response times
DDMS Instruments tool Visual Studio Console
(Time Profiler)
CPU Usage
ADB Instruments tool Windows Phone
“top” (CPU Activity) Developer Power Tools
Memory Usage
ADB Instruments tool Windows Phone

“dumpsys meminfo” (Allocations)

Disk Space

Visible on device

Developer Power Tools

Visible on device Visible on device

Table 2: The tools used to measure the performance
parameters on each platform.

make intensive use of hardware resources such as wireless
communication and sensors will have a higher energy con-
sumption. Battery usage is, hence, not considered in this
paper.

6.2 Measuring tools

Table 2 lists the tools used to measure the performance pa-
rameters on each platform. Android is a very open platform
compared to i0OS and Windows Phone. Hence, on Android,
the measuring process can be more controlled/fine-grained
compared to Windows Phone and iOS where the vendors
provide analysis tools that visualize the measured parame-
ters and there is no access to the raw data.

In Android and Windows Phone, the response times were
measured by calculating the elapsed time between specific
timestamps in the console log of a PC connected to the mo-
bile device. Android and Windows Phone automatically log
timestamps when an application is started and when it is
fully running. However, for implementations running on
PhoneGap a different timestamp was used. The applica-
tion running timestamp for PhoneGap applications was not
representative for the total launch time of the application
because it is fired when the webview is running. However,
after starting the webview, the JavaScript framework and
application still need to be loaded. Hence, an additional
log message was added to the JavaScript code so the entire
launch time could be taken into account. Additional log
messages were added to all implementations to measure the
response times of page navigation.

In iOS, the Time Profiler feature of the Instruments tool is
used for all response time measurements. This tool displays
the total execution time of each component of the appli-
cation. The startup times of the launch components were
added to obtain the total launch time. A similar approach
was taken for the page navigation response times.

For the memory and CPU usage measurements in An-
droid, a custom Java program? was created which periodi-
cally executes the top and the dumpsys meminfo commands
via the Android Debug Bridge (ADB) shell. For iOS, the Al-
locations and CPU Activity modules of the Instruments tool
were used. For Windows Phone, the Performance Monitor
of the Windows Phone Developer Power Tools was used.

2Java code can be found on

github.com/Michiel Willocx/cpt-performance-measurements.

42

7. RESULTS AND COMPARISON

This section lists and analyses the results of the perfor-
mance measurements. All measurements are executed on
a high-end (HE) and low-end (LE) device for Android and
i0S. A confidence interval of 95% was used when processing
the measurements. The tables in this section list the average
values of the measurements. All measurements are publicly
available®. As mentioned in section 4 Adobe Air and Tita-
nium do not support the Windows Phone platform. Hence,
no results are available for these tools on Windows Phone.

7.1 Response times

There are a few rules of thumb?* concerning the response
times of an application and the corresponding perceived user
experience. Response times under 100 milliseconds will feel
instantaneous to the user. Response times up to one (or
a few) second(s) are acceptable to the user, if they rarely
occur. Delays greater than a few seconds will significantly
degrade the user experience.

7.1.1 Launch time

The launch times are listed in Table 3. The table clearly
indicates that the overhead introduced by CPTs results in
slower launch times compared to native development. For
the JavaScript frameworks, the overhead is largely caused
by the webview which needs to be started before the actual
JavaScript application can be loaded. Between the differ-
ent JavaScript frameworks, minor differences in the launch
time of the application can be noticed. Overall, the imple-
mentation with Sencha Touch 2 is the slowest to start. The
relative order of the other JavaScript frameworks is depen-
dent on the platform on which the application is running.
For instance, jQuery mobile has the best launch time on
iOS while it performs much worse on Android and Windows
Phone. Although less prominent compared to the webview
for JavaScript framework implementations, the runtime is
for the largest part responsible for the launch time overhead
of the CPT implementations in the runtime category.

NeoMAD is a source code translator that doesn’t use a
runtime but translates the source code of the application
to dedicated source code for the different platforms. Con-
sequently, it is expected that the launch time of the Neo-
MAD implementation will closely resemble the native launch
times. This is the case for the Android and iOS implemen-
tation but not for the Windows Phone implementation.

Windows
HE

i0s
HE LE

Android
HE LE

Native implementation for each platform
Native 293 460 191

JavaScript Frameworks
Famo.us 1282
Intel App Framework 1009
Tonic 1225
jQuery Mobile 1790
Mgwt 1186 1433 503
Sencha Touch 2 2434 2858 758

Source code translators and runtimes
Adobe AIR 1364 2782 1191
NeoMAD 392 500 285
Titanium 820 1547 331
Xamarin 890 1177 347

611 876
1495
1806
2762
1223
1789
2967

2252
1500
1750
2501
2000
2516

1980
1383
1810
2515

438
537
731
424

5568
805
1152
1383

n/a
3144
n/a

1001

Table 3: Launch times in ms.

3The raw measurements can be found on
github.com/MichielWillocx /cpt-performance-measurements.

“http://blog.teamtrechouse.com /perceived-performance

7.1.2 Time to navigate between pages of the appli-
cation

This section analyzes the response times for navigating
to a page (i.e. by tapping a button on the screen) and re-
turning to a page (i.e. by using the back navigation item).
The measurements are respectively contained in Table 4 and
Table 5.

As illustrated in Table 4, the implementations using the

JavaScript frameworks (e.g. Famo.us, Mgwt) generally achieve

good response times of under 100ms. Notable exceptions are
Sencha Touch 2 and jQuery mobile. This is caused by how
the different JavaScript frameworks handle page switching.
While most JavaScript frameworks use the traditional win-
dow.push(page) and window.pop() functions to navigate be-
tween pages, Sencha Touch 2 and jQuery provide custom
ways to handle this, introducing additional overhead. How-
ever, once the page is created it is retained in memory and
subsequent visits to the page have response times similar
to the other JavaScript implementations. The implementa-
tions from the Runtime and Source Code Translator cate-
gory also have response times similar to native applications.
Noticeable is that the implementation using Xamarin per-
forms worse on Android than on iOS compared to the native
version.

Some JavaScript implementations have better response
times compared to the native version. This can attributed to
the fast rendering of a new HTML page in the webview com-
pared to the lifecycle management that occurs when switch-
ing between views in native applications.

As illustrated in Table 5, response times when returning
to the previous page are generally better than when opening
a new page. Apart from the Sencha Touch 2 version on
Windows Phone and the Xamarin version on the low-end
Android device, all response times are below 100ms. Hence,
users will experience these page transition as instantaneous.

Android i0s Windows
HE LE HE LE HE
Native implementation for each platform
Native 91 109 28 43 129
JavaScript Frameworks
Famo.us 26 20 4 12 31
Intel App Framework 49 50 32 50 75
Tonic 80 90 39 119 144
jQuery Mobile 100 113 71 295 296
Mgwt 38 40 15 26 53
Sencha Touch 2 267 425 135 492 821
Source code translators and runtimes
Adobe AIR 4 5 10 8 n/a
NeoMAD 111 126 21 23 76
Titanium 113 198 45 163 n/a
Xamarin 207 216 36 54 75

Table 4: Time to open a new page (in ms).

7.2 Memory consumption

Memory consumption was measured while visiting each
page of the application in a specified order (i.e. homepage
— search on GPS location — get detail of location — add lo-
cation to favorites — return to homepage — display favorites
— remove property from favorites — return to homepage).
Three values are considered in the evaluation: the memory
consumption right after starting the application, the mem-
ory consumption after going trough all the functions of the
application and the highest memory consumption measured
while going through the application. The measured values
are respectively shown in Table 6, Table 7 and Table 8.

43

Android iOS Windows
HE LE HE LE HE
Native implementation for each platform
Native 12 20 2 8 12
JavaScript Frameworks
Famo.us 12 20 19 26 16
Intel App Framework 29 30 16 31 52
Tonic 43 60 4 4 63
JjQuery Mobile 1 3 1 3 77
Mgwt 21 20 19 25 27
Sencha Touch 2 1 1 1 1 337
Source code translators and runtimes
Adobe AIR 1 1 8 7 n/a
NeoMAD 8 10 1 5 10
Titanium 1 3 2 7 n/a
Xamarin 40 244 3 10 12

Table 5: Time to return to previous page (home-
page) in ms.

The tables clearly show differences in memory manage-
ment strategies employed by the different platforms. An-
droid and Windows Phone 8 allocate significantly more RAM
for each implementation compared to i0OS. Furthermore, An-
droid application allocate significantly more memory on de-
vices with more available RAM. In iOS, this is also the case
for native applications and applications which use a run-
time or source code translator, but not for the JavaScript
frameworks. JavaScript frameworks use more memory on
low-end devices in iOS. This is again the result of the dif-
ference in webview and JavaScript engine between the two
iOS versions.

Overall the native implementations have a consistently
low memory requirement. The implementations with run-
time/source code translator tools have a little higher, but
similar, memory usage to the native implementations, with
the exception of the implementation with Adobe AIR that
overall has a much higher memory footprint. Overall, Neo-
MAD has a near native memory requirement, followed by
Xamarin and Titanium. On four of the five tested devices,
the implementations using the JavaScript frameworks have,
by far, the highest memory requirement. This is, however,
not the case on the high-end iOS device. On that device,
these implementations have the lowest memory requirement
of all tested implementations. This can, most likely, be
attributed to the different webview and JavaScipt engines
used on the different platforms. iOS 7 uses UIWebView and
JavaScriptCore as JavaScript engine, while iOS 9 makes use
of the WKWebview and the more recent Nitro JavaScript
engine. Hence, the performance of the different JavaScript
implementations can differ based on the platform and even
the platform version on which it is running. As can be de-
rived from Table 7, the used memory increases proportion-
ally to the memory allocated upon startup.

As can be derived from Table 8 and Table 7, the effect of
garbage collection is generally much smaller for the imple-
mentations using CPTs compared to the native implemen-
tations. There are, however, some exceptions. The garbage
collection behavior for the NeoMAD implementation is simi-
lar to the native implementation. Famou.us releases around
2MB memory once it reaches the threshold of 13MB. The
other implementations generally only increased in memory
usage, except for some rare momentary peaks in memory
usage.

7.3 CPU usage

CPU usage represents the part of the total available CPU
time spent by an application during a certain time interval.

Android iOSs Windows
HE LE HE LE HE

Native implementation for each platform

Native 72.62 11.62 2.88 19.20
JavaScript Frameworks

Famo.us 113.65 33.68 7.65 10.54 43.84

Intel App Framework 114.61 28.33 7.23 8.48 39.25

Tonic 119.45 32.38 7.18 12.82 48.35

jQuery Mobile 141.11 34.74 7.24 13.28 44.13

Mguwt 117.12 32.15 6.61 10.70 46.44

Sencha Touch 2 161.61 42.73 7.20 17.32 52.14
Source code translators and runtimes

Adobe AIR 57.55 43.87 199.49 68.60 n/a

NeoMAD 79.22 11.77 8.10 2.95 19.80

Titanium 89.58 26.66 12.92 6.45 n/a

Xamarin 81.99 17.77 9.29 4.16 19,84

Table 6: Memory consumption after launching the
application (in MB).

Android iOS Windows
HE LE HE LE HE

Native implementation for each platform

Native 80.11 15.63 12.83 4.31 33.03
JavaScript Frameworks

Famo.us 137.84 46.11 9.30 13.58 65.20

Intel App Framework 123.73 32.61 10.09 10.82 42.86

Tonic 153.66 40.80 9.93 16.96 60.71

jQuery Mobile 161.24 41.99 10.91 17.24 65.27

Mguwt 137.95 40.81 11.11 15.18 55.08

Sencha Touch 2 178.60 56.99 10.19 22.51 67.11
Source code translators and runtimes

Adobe AIR 98.82 71.85 242.04 86.83 n/a

NeoMAD 88.46 19.31 10.04 4.78 30.61

Titanium 102.41 35.47 16.56 12.01 n/a

Xamarin 96.51 29.92 15.04 9.78 34.60

Table 7: Memory consumption after using the ap-
plication (in MB).

Android iOos Windows
HE LE HE LE HE

Native implementation for each platform

Native 98.68 15.72 16.12 6.91 53.72
JavaScript Frameworks

Famo.us 159.66 46.88 11.53 21.04 69.45

Intel App Framework 134.53 32.72 10.47 11.21 43.28

Tonic 160.58 40.82 9.97 18.81 61.52

jQuery Mobile 161.25 42.00 11.11 19.18 67.13

Mguwt 137.96 42.57 11.42 15.92 64.06

Sencha Touch 2 193.68 57.07 10.41 25.00 68.40
Source code translators and runtimes

Adobe AIR 104.30 71.93 242.58 87.51 n/a

NeoMAD 126.80 19.32 15.45 9.06 42.93

Titanium 113.84 35.95 20.09 14.31 n/a

Xamarin 121.28 30.11 15.68 10.22 46,66

Table 8: Peak memory consumption while using the
application (in MB).

Displaying CPU usage in tables as numerical values is not
a trivial operation. In order to draw conclusions regarding
the CPU use of specific actions in the mobile application,
the sample time for the measurement intervals must be suf-
ficiently small. This paper only analyzes the CPU behavior
of the CPT implementations on the Android platform as the
iOS and Windows Phone 8 measurement tools do not allow
sufficiently small sample intervals. The results for Android
can be found in Table 9. This table contains the CPU usage
during two different actions in the life cycle of the applica-
tion: during the launch of the application and while search-
ing for properties with the GPS. It shows that native ap-
plications require the least CPU time and PhoneGap-based
applications have the highest CPU requirement. Also, for
every tested implementation, launching the application is
more CPU intensive than searching and displaying proper-
ties. The online results also contain measurements for iOS
and Windows Phone. Although these results are not as fine-

44

grained as on Android, similar behavior can be observed on
these platforms.

When an application is idle, most cross-platform tools
will not use the CPU. There are, however, some exceptions.
Famo.us is a cross-platform tool specialized in graphically
demanding applications such as games. Games and other
applications with advanced graphical components require an
engine capable of generating fluently moving components.
Therefore, Famo.us will aim to refresh the screen every 17
milliseconds in order to achieve 60 FPS. Hence, Famo.us
applications will constantly require 5-15% CPU load. Our
measurements show that on iOS, two other tools also re-
quired a constant CPU load, namely jQuery Mobile and
Adobe AIR.

On launch GPS search
HE LE HE LE
Native implementation for each platform
Native 15.8 7.74 5.58
JavaScript Frameworks
Famo.us 21.62 22.95 16.42 18.53
IAF 25.8 21.37 15.22 15.6
Tonic 23.81 24.94 20.75 16.83
JQuery Mobile 25.78 25.52 18.93 19.77
Mguwt 16.23 23.47 18.09 14.66
Sencha Touch 2 22.67 25.31 21.11 26.95

Source code translators and runtimes

Adobe AIR 17.51 21.52 16.08 16.29
NeoMAD 11.8 10.5 9.13 12.77
Titanium 13.8 17.32 11.85 13.01
Xamarin 19.79 23.44 4.88 11.37

Table 9: CPU usage in Android during lauch and
while searching for properties via GPS (in %).

7.4 Disk space

The sizes of the installers are displayed in Table 11, and
the sizes of the installed applications on the different de-
vices are displayed in Table 10. For both the installers and
the installed applications, the native applications consume
the least amount of persistent memory. This is mainly at-
tributable to the extra components that need to be packed
with the application (e.g. webview and runtime). Hence,
the difference in size between a cross-platform and a native
implementation will not increase linearly when more func-
tionality is added to the application. This can be derived
from Table 12 that lists the sizes of empty applications made
in the different cross-platform tools. These empty applica-
tions are basic applications which only contain a blank page
and have no functionality.

With Adobe AIR on Android, the programmer can choose
whether or not to bundle the runtime with the application.
If he chooses not to, a separate app containing the runtime
must be downloaded from the app store. The advantage is
that the APK size decreases and the runtime can be used by
multiple applications. If the runtime is not bundled with the
application, the size of the installer decreases drastically to
1,06MB. The separate runtime installer takes 18,9MB, the
installed runtime takes 40,86MB.

With Xamarin, the difference in approach for Android and
iOS is clearly visible. For Android, a runtime element is in-
cluded in the application (JIT compilation), while in iOS
the source code is directly compiled to an ARM executable
(AOT compilation). Hence, the Android installer of the
Xamarin implementation consumes considerable more disk
space than the iOS version.

Android iOS Windows
HE LE HE LE HE

Native implementation for each platform

Native 0,64 1,42 0,85 0,96 2,89
JavaScript Frameworks

Famo.us 3,06 3,2 4,5 4,7 5,87

IAF 2,74 2,88 3 3,1 2,28

Tonic 4,3 4,56 8 8,2 7,29

jQuery Mobile 3,18 3,32 4,5 5 3,94

Mgwt 4,37 4,51 12,2 12,8 11,5

Sencha Touch 2 3,89 4,03 5,5 6 4,07
Source code translators and runtimes

Adobe AIR 34,99 35,84 46 46,2 n/a

NeoMAD 2,76 8,18 9,8 10 5,73

Titanium 14,4 16,98 12,8 13,2 n/a

Xamarin 11,48 11,48 10,8 10,9 2,83

Table 10: Size of the application when installed on
the device (in MB).

Android i0s Windows Phone
Native implementation for each platform
Native 0,64 0,73 0,49
JavaScript Frameworks
Famo.us 3,05 2,62 1,44
IAF 2,73 2,24 1,13
Tonic 4,15 3,99 2,44
jQuery Mobile 3,17 3,06 1,56
Mgwt 4,36 4,25 2,77
Sencha Touch 2 3,88 3,78 2,07
Source code translators and runtimes
Adobe AIR 13,00 — n/a
NeoMAD 2,75 3,43 1,27
Titanium 8,75 6,06 n/a
Xamarin 8,61 3,83 0,47

Table 11: Size of the APK/IPA/XAP installer files
(in MB).

Android i0s ‘Windows
Native 0,02 0,07 0,07
Phonegap (Webview) 1,7 1,17 0,14
Titanium (Runtime) 8,45 10,61 n/a
Adobe AIR (Runtime) 12,50 — n/a
Xamarin (Runtime) 8,61 2,91 —

Table 12: Sizes of “empty” applications (in MB).

8. DISCUSSION

In this section general conclusions of which application de-
velopers should be aware when selecting a specific (type of)
cross-platform tool are drawn. The first subsection discusses
several observations based on the performance analyses con-
ducted in this paper. However, the selection of a CPT also
depends on several other non-performance related parame-
ters. Several important non-performance related parameters
are discussed in the second subsection.

8.1 CPT selection based on performance pa-
rameters

This section discusses several performance-related obser-
vations that developers should keep in mind when selecting
a cross-platform tool and developing an application.

e Cross-platform tools of the same category show similar
behaviour.

— JavaScript frameworks are the most CPU inten-
sive cross-platform technology and consume more
memory than native applications, especially on
Android and Windows Phone devices. They also
show the slowest launch times. Nevertheless, once
the application has launched, the response times
while navigating in the application are generally
similar to native response times.

45

— Runtimes are characterized by their increased disk
space and RAM usage compared to native imple-
mentations. This is caused by the runtime which
is packed together with the application. The use
of a runtime also increases the launch time of an
application. Once the application has launched,
the difference in response time when navigating
trough pages of the application compared to na-
tive is less prominent.

— Some cross-platform tools do not use a runtime or
a webview and rely solely on source code trans-
lation. As can be derived from the results of
the NeoMAD tool in the previous section, this
approach can result in applications with overall
near-native performance.

e The performance penalty resulting from the use of
cross-platform tools is generally acceptable, especially
on high-end devices.

e The performance of a cross-platform application strongly
depends on the targeted platform (version). For in-
stance, the version of the JavaScript engine/webview
can have a significant impact on the performance of
applications implemented with JavaScript frameworks.
Some tools use a different strategy depending on which
platform it is running. For instance Xamarin uses JIT
for Android applications and AOT for iOS applica-
tions. Note that this can also apply to native applica-
tions. For instance earlier Android versions use Dalvik
(JIT) while more recent versions use ART (AOT).

e The rendering of JavaScript framework applications re-
sults in fast response times. However, even though
JavaScript frameworks offer native skins, the user in-
terface still consists of HTML components that do not
provide the same user experience compared to real
native components. Most runtimes and source code
translator allow the use of native Ul components.

e Although JavaScript frameworks generally have fast
response times, there are some exceptions such as Sen-
cha Touch 2 and jQuery Mobile with respectively slow
and moderate response times. After the application
is launched, each first visit to the different pages of
the application is slower than subsequent visits to the
same page. For applications that consist of a limited
number of pages, the impact on the user experience
will be limited. However, applications consisting of
many different pages might benefit from using CPTs
with faster response times.

8.2 CPT selection based on non-performance
parameters

In order to select a suitable cross-platform tool, several
criteria other than performance have to be considered. Some
of these parameters are often discussed (e.g. license cost,
development environment/support, maturity and stability).
Below, several other important parameters are discussed.

e Existing infrastructure. Developing new applica-
tions from scratch is time consuming. In many cases,
existing code for other projects can be reused. For
instance, existing GWT projects are easily converted

to MGWT projects. JavaScript frameworks allow the
conversion of existing Web applications to mobile apps.

e Skills of the developer. Specific (types of) cross-
platform tools may be selected based on the back-
ground of the developer. For instance, JavaScript frame-
works and tools such as Titanium and ReactNative al-
low Web developers to use their extensive knowledge
of Web technologies to develop mobile apps.

Developers with experience in C# or Java can also
select a cross-platform tool that matches with their
programming background. For instance, NeoMAD and
MGWT use Java, while Xamarin uses C#. Traditional
programmers are often inclined to use runtimes and
source code translators.

e Type of application. Some cross-platform tools spe-
cialize in the development a specific type of mobile ap-
plication. For instance, Famo.us and Unity [14] pro-
vide specific support for custom graphical components
and animated graphics, as is a key requirement in game
development.

e Platform-specific code. Some cross-platform tools
(e.g. JavaScript frameworks) use a 100% shared code
base for all targeted platforms. Therefore, not all na-
tive features can be accessed. These tools are, hence,
not suitable for the development of applications with
very specific requirements regarding user interfaces and
hardware access.

Other tools (e.g. NeoMAD and Titanium) provide a
uniform interface for the development of user inter-
faces and access to hardware resources such as sensors
and persistent storage but also allow adding platform-
specific code to access otherwise unreachable native
APIs. This increases the engineering effort but allows
realizing very specific requirements (e.g. applications
developed for external clients) regarding user interfaces
and access to hardware resources.

Tools such as Xamarin® and ReactNative [11] focus on
the shared implementation of the business logic. The
hardware access and user interfaces are developed us-
ing platform-specific interfaces. The main advantage
of this approach is that all native APIs can be ac-
cessed trough a single programming language, and the
entire implementation for the different platforms is in-
tegrated in a single project.

9. CONCLUSION

This paper presented an in-depth analysis of the over-
all behavioural performance of a mobile application imple-
mented with ten promising/commonly used cross-platform
tools, and with native development tools of the three most
prominent mobile platforms (i.e. Android, iOS and Win-
dows Phone). The performance was evaluated on five differ-
ent devices, two Android and iOS devices and a Windows
Phone device. Based on the performance analysis, general
conclusions of which application developers should be aware
when selecting a specific (type of) cross-platform tool are
drawn.

5Xamarin is also working on libraries that provide uniform
interfaces for Ul (Xamarin.Forms) and hardware access (Xa-
marin.Mobile).

46

This paper focused on the overall behavioural performance
of applications implemented with different cross-platform
tools. However, the use of cross-platform tools can have an
impact on specific functional aspects of mobile applications.
Hence, future work will consist of investigating these aspects
by measuring the overhead related to, for instance, execut-
ing complex algorithms, accessing device resources such as
sensors or persistent memory and communication with other
devices.

10. ACKNOWLEDGMENT

We would like to show our gratitude to Nicolas Quartier
who contributed many valuable measurements and results
to this paper in the context of his master thesis.

11. REFERENCES

[1] Adobe air website.
http://www.adobe.com/nl/products/air.html.
Angularjs website. https://angularjs.org/.
Famo.us website. http://famous.org/.

2]
3]
[4] Intel app framework website.
https://app-framework-software.intel.com/.

[5] Ionic website. https://ionicframework.com/.

[6] jquery mobile website. https://jquerymobile.com/.

[7] mgwt website. http://www.m-gwt.com/.

[8] Mono framework website.
http://www.mono-project.com/.

Neomad website. http://www.neomades.com/en/.
Phonegap website. https://phonegap.com/.
Reactnative website.
https://facebook.github.io/react-native/.

Sencha touch 2 website.
https://www.sencha.com/products/touch/#overview.
Titanium website. http://www.appcelerator.org/.
Unity website.
https://unity3d.com/learn/tutorials/modules/
beginner/live-training-archive /mobile-development.
Xamarin website. https://xamarin.com/.

S. Amatya and A. Kurti. Cross-platform mobile
development: Challenges and opportunities. In

V. Trajkovik and M. Anastas, editors, ICT
Innovations 2013, volume 231 of Advances in
Intelligent Systems and Computing, pages 219-229.
Springer International Publishing, 2014.

M. Ciman and O. Gaggi. Evaluating impact of
cross-platform frameworks in energy consumption of
mobile applications. In V. Monfort and K. Krempels,
editors, WEBIST 2014 - Proceedings of the 10th
International Conference on Web Information Systems
and Technologies, Volume 1, Barcelona, Spain, 3-5
April, 2014, pages 423-431. SciTePress, 2014.

M. Ciman, O. Gaggi, and N. Gonzo. Cross-platform
mobile development: A study on apps with
animations. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing, SAC ’14, pages
757-759, New York, NY, USA, 2014. ACM.

L. Corral, A. Sillitti, G. Succi, A. Garibbo, and

P. Ramella. Evolution of mobile software development
from platform-specific to web-based multiplatform
paradigm. In Proceedings of the 10th SIGPLAN
Symposium on New Ideas, New Paradigms, and

[9]
(10]
(1]
(12]

(13]
(14]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Reflections on Programming and Software, Onward!
2011, pages 181-183, New York, NY, USA, 2011.
ACM.

I. Dalmasso, S. Datta, C. Bonnet, and N. Nikaein.
Survey, comparison and evaluation of cross platform
mobile application development tools. In Wireless
Communications and Mobile Computing Conference
(IWCMC), 2018 9th International, pages 323-328,
July 2013.

W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and
A. M. Wahba. Taxonomy of cross-platform mobile
applications development approaches. Ain Shams
Engineering Journal, pages —, 2015.

H. Heitkotter, S. Hanschke, and T. Majchrzak.
Evaluating cross-platform development approaches for
mobile applications. In J. Cordeiro and K. Krempels,
editors, Web Information Systems and Technologies.
8" International Conference, WEBIST 2012, Porto,
Portugal, April 18-21, 2012, Revised Selected Papers,
volume 140 of Lecture Notes in Business Information
Processing (LNBIP), pages 120-138. Springer, Berlin
Heidelberg, 2013.

International Data Corporation (IDC). Smartphone os
market share, g4 2014. http://www.idc.com/prodserv/
smartphone-os-market-share.jsp, 2015.

I. Malavolta, S. Ruberto, T. Soru, and V. Terragni.
End users’ perception of hybrid mobile apps in the
google play store. In IEEE MS, pages 25-32. IEEE,
2015.

M. Palmieri, I. Singh, and A. Cicchetti. Comparison of
cross-platform mobile development tools. In
Intelligence in Next Generation Networks (ICIN),
2012 16th International Conference on, pages
179-186, Oct 2012.

R. Raj and S. Tolety. A study on approaches to build
cross-platform mobile applications and criteria to
select appropriate approach. In India Conference
(INDICON), 2012 Annual IEEE, pages 625—629, Dec
2012.

A. Ribeiro and A. R. da Silva. Survey on
cross-platforms and languages for mobile apps. In
Proceedings of the 2012 Eighth International
Conference on the Quality of Information and
Communications Technology, QUATIC 12, pages
255-260, Washington, DC, USA, 2012. IEEE
Computer Society.

Vision Mobile. Cross-platform developer tools 2012:
Bridging the worlds of mobile apps and the web.
February, 2012.

M. Willocx, J. Vossaert, and V. Naessens. A
quantitative assessment of performance in mobile app
development tools. In 2015 IEEFE International
Conference on Mobile Services, MS 2015, New York
City, NY, USA, June 27 - July 2, 2015, pages
454-461, 2015.

S. Xanthopoulos and S. Xinogalos. A comparative
analysis of cross-platform development approaches for
mobile applications. In Proceedings of the 6th Balkan
Conference in Informatics, BCI 13, pages 213—-220,
New York, NY, USA, 2013. ACM.

A. Zibula and T. A. Majchrzak. Developing a
cross-platform mobile smart meter application using

47

html5, jquery mobile and phonegap. In K.-H.
Krempels and J. Cordeiro, editors, WEBIST, pages
13-23. SciTePress, 2012.

